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Given their importance, these two tasks 
have been extensively studied in the signal 
processing field for decades. In artificial 
systems, sound localization and separa-
tion are typically performed using two or 
more microphones, known as the micro-
phone array. However, the accuracy of 
localization and separation of the micro-
phone array is fundamentally limited by 
the number of the microphones and the 
physical size of the array.[4–7] Considering 
that such microphone arrays could be 
cumbersome to mount and maneuver, 
their utility is much reduced in certain 
situations.[8]

A lot of effort has been made in over-
coming the shortcomings of the micro-
phone array by developing biomimetic 
systems.[9,10] In biological organisms, such 
as humans, sound localization and separa-
tion can be performed with high accuracy 
using just two ears, and sometimes even 
just a single ear suffices. Accomplishing 

such tasks is primarily due to several key features of the human 
auditory system. First, unlike common microphones, the ear-
drum is not exposed directly to the air. Therefore, the sound is 
scattered by the head, torso, and the ear pinna before its arrival 
at the eardrum. Due to the irregular spatial structure of the 
scatters, the sound measured in the eardrum changes as a func-
tion of the source’s direction, referred to as the head-related 
transfer function, which is the basis of monaural localization 
and separation.[11–13] Second, accomplishing this task requires 
the prior knowledge of received sounds.[14] In fact, the ability 
of humans to estimate the direction of a sound monaurally is 
contingent on their familiarity with it. We always estimate the 
direction based on our years of experience about what sounds 
are likely.[15–17]

Researchers have attempted to replicate these bionic fea-
tures in artificial listening systems in an effort to achieve 
monaural sound localization and separation.[14,18–21] To design 
such a system, one has to deal with two important issues. 
First, a learning mechanism should be introduced into the 
system, which is embodied in the reconstruction algorithm, 
such as compressive sensing and Hidden Markov Model.[22–24]  
Second, an anisotropic scattering mechanism should be 
designed in order to provide monaural cues, such as placing 
irregular scatters surrounding the microphone.[19,21] Among 
the numerous approaches in recent years, acoustic metama-
terials have served as an optimal choice for use in designing 
an anisotropic scatter mechanism. Acoustic metamaterials 

Conventional approaches to sound localization and separation are based on 
microphone arrays in artificial systems. Inspired by the selective perception 
of the human auditory system, a multisource listening system which 
can separate simultaneous overlapping sounds and localize the sound 
sources in 3D space, using only a single microphone with a metamaterial 
enclosure is designed. The enclosure modifies the frequency response 
of the microphone in a direction-dependent manner by giving each direction 
a characteristic signature. Thus, the information about the location and 
the audio content of sound sources can be experimentally reconstructed 
from the modulated mixed signals using a compressive sensing algorithm. 
Due to the low computational complexity of the proposed reconstruction 
algorithm, the designed system can also be applied in source identification 
and tracking. The effectiveness of the system in multiple real-life scenarios 
is evaluated through multiple random listening tests. The proposed 
metamaterial-based single-sensor listening system opens a new way of sound 
localization and separation, which can be applied to intelligent scene 
monitoring and robot audition.

© 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, 
Weinheim. This is an open access article under the terms of the Creative 
Commons Attribution License, which permits use, distribution and repro-
duction in any medium, provided the original work is properly cited.

1. Introduction

Sound localization and separation are both fundamental tasks 
in signal processing with a wide range of applications, including 
robot audition, speaker recognition, and medical detection.[1–3] 
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have been proven to be effective in modulating both the 
phase distribution and the amplitude distribution of acoustic 
signals.[25–30] Combining acoustic metamaterials and compres-
sive sensing, a Helmholtz-based device was used to localize 
known noise sources, and a space-coiling anisotropic metama-
terial was designed to demonstrate a single-detector acoustic 
camera.[18,20] However, both of these studies primarily focused 
on the 2D space. Additionally, an extra microphone is needed 
to obtain the phase information of the measuring signals 
and the reconstruction algorithm relies on the full complex-
valued spectrum, which limits their real-time performance 
and application.

Taking into consideration the current problems and the pre-
viously reported designs, in this study we developed a meta-
material-based single-microphone listening system (MSLS), 
which can localize and separate multiple sound signals from an 
overlapping signal in 3D space. A 3D metamaterial enclosure 
(ME) is designed to provide monaural cues to the inversion task 
by coding sound signals as a function of the source direction. 
The information regarding the sound sources could be recon-
structed from the modulated mixed signals utilizing the com-
pressive sensing framework. During signal processing, a joint 
algorithm of variable sparsity principal component analysis and 
orthogonal matching pursuit (VSPCA-OMP) is used to solve the 
multisource listening problem, which just relies on the power 
or magnitude spectrum of the signal. Due to the low computa-
tional complexity and high robustness, the system not only real-
izes the sound localization and separation but also has a great 
real-time performance in source identification and tracking. 
We experimentally demonstrate the performance superiority 
of the MSLS using challenging sources in real-life scenarios. 
These results promise a wide range of potential applications for 
our proposed system, such as intelligent scene monitoring and 
robot audition.

2. Theory and Design

2.1. Metamaterial Enclosure Design

Inspired by the frequency-dependent filtering mechanism, we 
designed the microphone enclosure with carefully engineered 
metamaterials in order to achieve dispersive frequency modula-
tion. The proposed ME is shown in Figure 1a, which is composed 
of three-layer hemispherical shells. Multiple holes are randomly 
drilled on the hemispherical shells. Eight transverse plates and 
16 longitudinal plates are also randomly inserted between these 
shells to divide the hemisphere layers into 24 different cavities. 
A single microphone is placed at the center of the hemisphere to 
receive signals from different directions modulated by the ME.

The ME can be regarded as the combination of multiple 
acoustic channel modules (ACMs) toward different directions. 
One of the ACMs is marked with a red frame in Figure 1a. The 
ACM can be regarded as a second-order acoustic filter, which 
includes three layers of perforated plates and two cavities. The 
geometric parameters of the ACM, including the volume of the 
cavities, the filling ratio, and the location distribution of the holes, 
would directly affect the frequency response (see Section S1, 
Supporting Information). During the design process, holes with 
different radii are randomly distributed on the hemispherical 
shells and the plates are also randomly inserted between the 
hemispherical shells. Therefore, the volumes of the cavities, 
the filling ratio, and the location distribution of the holes are 
all random for these ACMs. The structural randomness of the 
ACMs essentially leads to the stochastic frequency response. 
Considering that the ME is composed of different ACMs toward 
different directions, the frequency response of the ME would be 
directionally dependent. As a result, the original omnidirectional 
measurement mode of the single microphone is modified by the 
randomized modulation from the ME.

Adv. Sci. 2020, 7, 1902271

Figure 1. Model of the 3D ME. a) Schematic view of the 3D ME: outer layer, middle layer, and inner layer. b) Simulated frequency responses of the ME 
in four different directions. c) The coherences between the four directions before VSPCA. d) The coherences between the four directions after VSPCA.
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The frequency responses below 5 kHz of the designed ME 
in four different directions are calculated using the finite ele-
ment method (FEM), which are shown in Figure 1b. Although 
the frequency responses in the low-frequency band look similar 
for the finite geometric size of the ME, one observes that the 
frequency responses drastically vary with direction in a wide 
frequency range as a result of the modulation by the ME. Here, 
we choose the coherence μij to quantitatively evaluate the inde-
pendence of the frequency responses in different directions. 
The coherence between two responses hi and hj is defined as 
μij = 〈hi,hj〉/|hi||hj|, which represents the overlap between the two 
frequency responses. Due to the omnidirectional measurement 
mode of the microphone, the coherences between two different 
directions would be close to 1 without the ME. After the modu-
lation of the ME, the frequency responses vary from direction 
to direction and the coherences would also be reduced. The 
coherences between the four frequency responses mentioned 
above are shown in Figure 1c. It can be seen that the coher-
ences between two different directions are all less than 0.91. 
The above results demonstrate that the variation of the geo-
metric parameters of the ME is large enough to ensure that the 
frequency response is sensitive to direction.

2.2. The Framework of Signal Processing Algorithm

Compressive sensing framework is employed to afford the 
MSLS with learning capabilities. In the framework of compres-
sive sensing, the proposed listening system can be described 
with a general model

y sAA=  (1)

where y is the vector form of the measured data (observation 
vector); s is the sparse representation of the signals (object 
vector), which can be estimated to reconstruct the original sig-
nals; Matrix A = [a1,a2,…,aQ] is a P × Q matrix (measurement 
matrix) determined by the ME and the signals, which is con-
structed to store the prior knowledge of possible sounds.

The concept schematic of the data collection and processing 
for the MSLS is shown in Figure 2. The sound waves are first 

emitted from the sources and then they propagate to the sur-
face of the ME. Then they are modulated by the ME and col-
lected by the microphone at the center of the enclosure as a 
single mixed waveform. In the free field, the mathematical 
model of the interaction between the sound waves and the ME 
can be expressed as

m s if f hω ω ω( ) ( ) ( )= °  (2)

where fm(ω) is the spectral amplitude of the signal collected by 
the microphone; fs(ω) is the spectral amplitude of the original 
signal; hi(ω) is the frequency response of the MSLS, which is a 
direction-related function; “°” is the Hadamard product, which 
indicates element-wise multiplication.[31] Therefore, the meas-
ured signals will be different even for the same original signals 
coming from two different directions.

In order to reconstruct the location and the audio content of 
each source from the mixed waveform, the signal processing 
has been divided into two steps: training and testing. During 
the training procedure, the training signals are collected 
one by one to be used as the training set. After a series of 
signal preprocesses (see the Experimental Section), the meas-
urement matrix A can be experimentally constructed (see  
Section S2, Supporting Information).[32] Here, the matrix A is 
constructed as a real matrix, i.e., we only need the spectrum 
amplitude of the measuring signals, without phase informa-
tion. Therefore, the signals are collected only by the MSLS 
without the additional referenced microphone. As a result 
of this, the computational complexity of signal processing 
has also been greatly reduced. After training, a sequence of 
sounds is randomly chosen from the audio library and simul-
taneously generated from the sources in order to evaluate 
the performance of the MSLS. This process is described as 
testing, where the observation vector y is obtained. The obser-
vation vector y can be regarded as the weight sum of certain 
columns of matrix A, which correspond to the nonzero ele-
ments of the object vector s. Therefore, the object vector s 
can be recovered using algorithmic approaches based on the 
matrix A and vector y. Then both the locations and the audio 
contents of the active sources can be reconstructed through 
estimating the object vector s.

Adv. Sci. 2020, 7, 1902271

Figure 2. Schematic of data collection and processing of the MSLS. The procedure of data collection is shown in the left frame and the procedure of 
signal processing is shown in the right frame.
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The two major algorithmic approaches to sparse recovery 
are the L1-minimization method and the iterative method. 
Here, orthogonal matching pursuit (OMP), a kind of iterative 
method, is applied to the sparse recovery.[33] The OMP performs 
faster and is easier to implement than the L1-minimization 
method.[34] It only requires k iterations to recover a k-sparse 
signal. For a measurement matrix A ∈ R, each iteration 
includes two steps: First, a multiplication between a N × M 
matrix and a M × 1 vector requires to be calculated; Then, a 
least squares problem in M × k dimensions needs to be solved 
based on the calculation results in the previous step. How-
ever, the condition of OMP on measurement matrix A is more 
restrictive than the restricted isometry condition. Therefore, 
we need to further reduce the correlation of the columns of 
the matrix A by transforming both the training samples and 
the testing samples. Considering that one testing sample can  
be regarded as a linear superposition of several training samples, 
the transformation should be a linear transformation. Here, we  
propose an improved algorithm called variable sparsity prin-
cipal component analysis (VSPCA).[35] Compared with the prin-
cipal component analysis (PCA), the sparsity k is introduced 
to the normalization process to ensure that all of the samples 
can be mapped to the same space. This allows us to reduce the 
dimension for each signal sample while still capturing most of 
their variability according to the sparsity (details concerning 
the VSPCA algorithm can be found in Section S3, Supporting 
Information). In order to demonstrate the effectiveness, 
the proposed VSPCA was used to transform the frequency 
responses in Figure 1b. The coherences after 
transformation are calculated and shown in 
Figure 1d. It can be seen that the coherences 
are greatly reduced compared with Figure 1c. 
Therefore, the columns of the matrix A 
become more independent, which further 
improves the reconstruction accuracy.

3. Experiment

3.1. Sound Localization and Separation

The effectiveness of the MSLS was evalu-
ated using listening tests, which should be 
able to identify the locations of the activated 
sources while simultaneously segregating the 
overlapping signals. The listening tests were 
conducted in a semi-anechoic room and the 
experimental setup is shown in Figure 3a. 
The ME, whose enlarged photo is shown in 
Figure 3b, was deployed on the center of the 
floor. A microphone was placed in the inner 
center of the hemisphere shell. The bottom 
of the inner hemisphere was sealed using the 
absorption cotton to reduce the reverbera-
tion. Sixteen speakers were used as sound 
sources, of which the locations are sche-
matically shown in Figure 3c. These speakers 
formed two rings, with radii of 2.5 and 4.5 m, 
which evenly distributed around the MSLS. 

To evaluate the effectiveness of the MSLS in 3D space, the 
speakers in the inner ring were deployed on the floor, while the 
speakers in the outer ring were mounted on the stands with a 
height ranging from 90 to 100 cm.

The audio library used in the tests contained six typical 
sound signals often heard in the street, including sounds of 
police car, backing car, ambulance, car whistle, fire engine, 
and bicycle bell. All of these signals are wideband and most 
energy is distributed below 5 kHz (the spectrograms and power 
spectral densities of these signals are provided in Figure S5,  
Supporting Information). The training process should be 
experimentally performed in advance. Each signal in the audio 
library was successively emitted from 16 different locations 
and collected by the microphone at the center of the enclosure 
to obtain the measurement matrix A. During the testing pro-
cess, one or more of the speakers from the 16 different loca-
tions were randomly selected as activated sources. The audio 
contents were also randomly selected from the audio library 
and simultaneously emitted by the activated sources. The test 
signals from multiple sound sources were mixed in the trans-
mission process and then collected by the microphone. After a 
series of signal processing, the object vector s could be recon-
structed. The reconstruction results are evaluated by the suc-
cess rate, which is defined as α = n/k. Here, n is the number 
of the recognized sources, which means both the location and 
audio content of the sources were reconstructed successfully; 
k is the total number of the activated sources, also known as 
sparsity.

Adv. Sci. 2020, 7, 1902271

Figure 3. Measurement performed in a semianechoic room. a) Photo of the experimental setup 
in the chamber. b) Enlarged photo of the ME. A microphone is placed in the inner center of the 
ME. c) Schematic of the setup: the ME and microphone are placed at the center, surrounded 
with 16 speakers.
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The sparsity k in the tests varied from 1 to 5. We conducted 
100 random experiments for each sparsity. The experimental 
results are arranged by the number of activated sources as 
well as by the audio contents, which are shown in Figure 4a,b, 
respectively. In Figure 4a, the distribution of the reconstruc-
tion results for each experiment is displayed by different colors. 
As k increases, α gradually decreases. This is because the pro-
jections of high sparsity signals on the dictionary may not be 
unique. Despite this, the results of 100 random experiments 
indicate that the average recognition ratio α is greater than 90% 
when the number of activated sources k is no more than three. 
At the same time, the average recognition ratio of the MSLS is 
still close to 70%, even if the k is up to five.

Figure 4b gives the detailed results of the six kinds of audio 
contents. The average success rates almost exceed 90% for all of 
the audios in cases with a small sparsity k. As k increases, the 
accuracy of the reconstructions varies for different audios due 
to different frequency components. Due to the size limit, the 
metamaterial-based enclosure is more capable in modulating 
the high-frequency waves. The audio samples with more energy 
in the higher frequency range are more likely to be recon-
structed. The experimental results also show that the error is 
somewhat higher for the audios whose energy concentrates on 
some narrow frequency ranges, such as the siren sound of the 
police car. This is because the spectral shaping of these audios 
is not large enough. Indeed, psychological studies have shown 
that humans also cannot localize narrowband signals.[36]

The proposed MSLS is applicable to many other scenarios. 
We also examined the performance of the MSLS in other four 
scenarios, including home, animal farm, speech, and concert. 

For each scenario, we still selected six typical sounds to conduct 
the listening tests (the spectrograms and power spectral densi-
ties of the signals are provided in Figures S6–S9, Supporting 
Information). The results are similar to the results we obtained 
from the tests in the street scenario, which are shown in Table 1 
(details concerning the results are provided in Figures S10–S13, 
Supporting Information). When the number of the activated 
sources is no more than 3, the average success rate is greater 
than 90%. Moreover, in order to validate the effectiveness of the 
MSLS in a larger corpus, another listening test containing 30 
command words from the Speech Commands dataset was per-
formed.[37] The results are shown in the last column of Table 1, 
which have the same variation trend of reconstruction accuracy. 
The results well demonstrate the stability of the MSLS in the 
case of larger audio numbers (details concerning the results are 
provided in Figure S14, Supporting Information). In order to 
further examine the 3D spatial resolution, we also conducted 
the listening tests in pitching direction, which can be found 
in Section S4 (Supporting Information). In addition, we made 
videos in which a portion of the tests were recorded in order 
to transform the listening tests into dynamic visualizations (see 
Videos S1 and S2, Supporting Information). The above results 
demonstrate that the MSLS is capable of identifying locations 
while simultaneously separating audio contents from the mixed 
signals in 3D space, highlighting the wide range of potential 
applications of our system.

3.2. Source Tracking and Identification

Owing to the real-time applicability of the VSPCA-OMP algo-
rithm, the MSLS can also be applied in source tracking and 
identification. In order to evaluate this, we again chose the 
street scenario. To simulate several cars moving in the street, 
we kept the activated speakers moving artificially and collected 
the signals during the tests. The trajectories of the speakers are 
shown in Figure 5. The first listening test simulated an ambu-
lance moving around the system, which is schematically illus-
trated in Figure 5a. In the second listening test, two activated 
speakers which played sounds of backing car and fire engine, 
moved simultaneously as shown in Figure 5b. Owing to the 
low computational complexity of the reconstruction algorithm, 

Adv. Sci. 2020, 7, 1902271

Figure 4. The results of the listening tests in the street scenario. a) The results organized by the number of activated sources k. The success rate for 
each experiment is represented by different colours. For each k, the average success rate is calculated and represented by a red triangle. b) Detailed 
results of the six kinds of signals in the street scenario. Each color represents a different audio content.

Table 1. The results of listening tests based on other datasets: home, 
animal farm, speech, concert, and commands.

Home Animal farm Speech Concert Commands

k = 1 100.00% 100.00% 100.00% 100.00% 100.00%

k = 2 96.50% 97.00% 97.50% 96.50% 96.25%

k = 3 91.00% 91.67% 91.67% 93.33% 84.67%

k = 4 81.00% 86.75% 81.00% 77.75% 79.38%

k = 5 77.60% 77.80% 69.40% 68.60% 73.70%

 21983844, 2020, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.201902271, W

iley O
nline L

ibrary on [04/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



www.advancedsciencenews.com

1902271 (6 of 7) © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.advancedscience.com

the tracking for multiple objects had been realized within 1 s. 
At the same time, the objects were also accurately identified. 
The results of the two tests can be found in Videos S3 and S4 
(Supporting Information). In addition, all of the sound sig-
nals, including unavoidable noises produced by moving the 
speakers, were monitored and processed during the tests. And 
there was no denoising algorithm during the signal processing, 
which shows a certain antinoise performance of the MSLS. 
The above reconstruction tests demonstrate that the MSLS can 
identify multiple sources and track them quickly and accurately.

4. Conclusion

In this paper, we present a 3D listening system using a single 
microphone in combination with the ME, which functionally 
mimics the listening capability of the human auditory system. A 
well-designed ME is used to break the original omnidirectional 
measurement mode of the single microphone. And a joint 
algorithm VSPCA-OMP is presented to solve the multisource 
listening problem, which has the advantages of low computa-
tional complexity and good real-time performance. Listening 
tests were conducted in several common scenarios, in which  
16 speakers emitted sound signals from various directions in 3D 
space. The test results show that the MSLS is capable of local-
izing multiple sound sources while simultaneously separating 
audio contents from the mixed signals within 1 s. Due to the 
low computational complexity of the reconstruction algorithm,  
the proposed system can also be applied in source identifica-
tion and tracking. We envision that the MSLS can be useful for  
multisource speech recognition and segregation, which is desired 
in intelligent scene monitoring and robot audition. In the future, 
denoising algorithm can be added in the signal processing pro-
cedure to enhance robustness in complex environments.

5. Experimental Section

ME Prototype: The geometric structure of the ME was designed to 
be extremely irregular in order to make the received signals appear 

different depending on what direction it is coming from. Therefore, 
the randomizing algorithm was introduced to the design process. The 
designed ME is composed of three-layer hemispherical shells. The radii 
of the three hemispherical shells from the outer to the inner are 24, 16.8, 
and 7.2 cm, respectively; and the thickness of the shells is 1, 0.7, and 
0.3 cm, respectively. Eight transverse plates and 16 longitudinal plates, 
whose thicknesses are all 1 cm, were randomly inserted between these 
spherical shells to divide the hemisphere layers into 24 different cavities. 
Multiple holes were randomly drilled on the hemispherical shells, whose 
radii range from 0.3 to 3 cm. There is no overlap between any two holes, 
and the distance between them is larger than 0.5 cm. The hole filling 
ratio of the perforated shells is set relatively high to ensure the high 
energy transmission and high quality of reception signals. Moreover, the 
variation of the geometric parameters is large enough to ensure different 
effective acoustic parameters in different directions.

The sample was fabricated using 3D printing technology with a 
precision of 0.06 mm, which could ensure that there are no cracks in 
the connections between the shells and the plates. The material used 
for the sample is Lasty-KS, a type of UV-curable resin, whose density is 
1.13 g cm−3. The acoustic impedance of the Lasty-KS is much larger than 
that of air, so the shells and the plates can be regarded as rigid for the 
sound wave.

Experimental Setup: The layout of the measurement system is shown 
in Figure 6. The signal receiver used in the listening tests is a 1/2 inch 
omnidirection microphone (B&K 4189-A-021). The signal acquired by 

Adv. Sci. 2020, 7, 1902271

Figure 5. Listening tests of source identification and tracking. a) The trajectories of a moving source of a ambulance. b) The trajectories of two moving 
sources of the backing car and the fire engine. Detailed results are recorded in Videos S3 and S4 (Supporting Information).

Figure 6. Schematic of the system layout.
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the microphone is sent to an audio interface (Audient-iD14). Sixteen 
speakers (HiVi H5) are used as audio sources, which can be controlled 
independently through a DA converter (RME M-32 DA). Both the audio 
interface and the DA converter are connected to a computer. All of the 
emitted and received acoustic signals are controlled by this computer.

Signal Processing: The signal acquired by the microphone is a time-
domain signal, while the reconstruction is based on the frequency 
domain information. The spectral amplitude of each frame of the signal 
can be calculated though framing and short time Fourier transform 
(STFT). As shown in Figure 1b, the similarity among these frequency 
responses in the low-frequency band is higher than that in the high-
frequency band, which is not conducive to the signal reconstruction. 
Therefore, consideration of the operational frequency range of the 
proposed system and the power spectral densities of the audio signals 
used, the information of the signals between 100 and 5000 Hz was 
preserved during the STFT. The signals were processed frame by frame 
both in the training and testing procedures. For the testing signals, each 
frame would correspond to a reconstruction result through the OMP 
algorithm. Then majority voting was used to get the final result based on 
these reconstruction results.
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